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Motivation

Sea turtle swimming

Four flippers

Front flippers for thrust generation. Back flipper for steering.
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Motivation

Oscillating wing wind- and hydro- power generator

Hydrodynamically controlled wing

Aerohydro Research and Technology Associates.
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Motivation

Plunge-Pitch airfoil for lift generation
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Why spectral difference method?

Element-wise polynomial reconstruction

p-refinement

No re-meshing

Poor boundary representation
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Why spectral difference method?

High-order accuracy even with curved boundary

element mapping with high-order curved boundary

J =
∂(x, y, t)

∂(ξ, η, τ)

=

 xξ xη xτ
yξ yη yτ
0 0 1

 (1)

Key

Universal reconstruction
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Why spectral difference method?

High-order accuracy even with curved boundary

High-order scheme is attractive for vortex dominated flow

2nd order SD

4th order SD
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Mathematical Formulation

Compressible Navier-Stokes equations

∂Q

∂t
+∇Finv(Q)−∇Fv(Q,∇Q) = 0 (2)

Q =


ρ
ρu
ρv
E

 , fi =


ρu

ρu2 + p
ρuv

u(E + p)

 , gi =


ρv
ρuv

ρv2 + p
v(E + p)

(3)

fv
µ

=


0

2ux + λ(ux + vy)
vx + uy

ufv[2] + vfv[3] +
Cp

Pr
Tx

 ,
gv
µ

=


0

vx + uy
2vy + λ(ux + vy)

ugv[2] + vgv[3] +
Cp

Pr
Ty
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Mathematical Formulation

Linear constitutive relation

tij = (−p+ λamm)δij + (µ+ κ)aij + µaji (4)

For Navier-Stokes equations, aij = vj,i;

Micropolar formulation has two deformation tensors

aij = vj,i + ejikωk;

bij = ωi,j .

The same linear relation for heat flux in both N-S and Micropolar
formulations, i.e. Fourier’s Law:

σ =
ν

Pr
· gradT. (5)

Pressure-Energy Relation:
E = p

γ−1 + 1
2ρ(u2 + v2) for Navier-Stokes formulation;

E = p
γ−1 + 1

2ρ(u2 + v2) + 1
2ρjω

2 for Micropolar formulation.
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Mathematical Formulation

Micropolar formulation

∂Q

∂t
+∇Finv(Q)−∇Fv(Q,∇Q) = S (6)

Q =


ρ
ρu
ρv
ρjω
E

 , fi =


ρu

ρu2 + p
ρuv
ρjωu

u(E + p)

 , gi =


ρv
ρuv

ρv2 + p
ρjωv

v(E + p)

(7)

S =



0
0
0

κ
(
∂vy
∂x −

∂vx
∂y − 2ω

)
0


(8)
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Mathematical Formulation

Viscous fluxes of Micropolar equations

fv =


0

(2µ+ κ)ux + λ(ux + vy)
µ(vx + uy) + κ(vx − ω)

Γωx
ufv[2] + vfv[3] + ωfv[4] +

µCp

Pr
Tx

 (9)

gv(Q,∇Q) =


µ(vx + uy) + κ(uy + ω)
(2µ+ κ)vy + λ(ux + vy)

Γωy
ugv[2] + vgv[3] + ωgv[4] +

µCp

Pr
Ty

 (10)

Ref: Chen, Lee, Liang (2011), JNFM;
Chen, Liang, Lee (2011), JNN.
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Transform Navier-Stokes and Micropolar equations

Transform conservative equations

∂F/∂x = ∂F/∂ξ ·∂ξ/∂x+∂F/∂η ·∂η/∂x+∂F/∂τ ·∂τ/∂x (11)

∂G/∂y = ∂G/∂ξ ·∂ξ/∂y+∂G/∂η ·∂η/∂y+∂G/∂τ ·∂τ/∂y (12)

Q̃ = |J | ·Q F̃

G̃

Q̃

 = |J |

 ξx ξy ξτ
ηx ηy ητ

0 0 1

 F
G
Q
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Transform Navier-Stokes and Micropolar equations

Transformed conservative equations + Geometric
conservation law

∂Q̃

∂τ
+
∂F̃

∂ξ
+
∂G̃

∂η
= 0 (13)

∂|J |
∂τ

+
∂(|J |ξt)
∂ξ

+
∂(|J |ηt)
∂η

= 0 (14)

Final set of equations

∂Q

∂τ
=

1

|J |

{
Q

[
∂(|J |ξt)
∂ξ

+
∂(|J |ηt)
∂η

]
−

[
∂F̃

∂ξ
+
∂G̃

∂η

]}
.(15)

A five-stage fourth-order Runge-Kutta method for time
advancement.
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Elements of the SD method

Locating flux and solution points

∂Q̃
∂τ + ∂F̃

∂ξ + ∂G̃
∂η = 0

solution points store Q̃,
ξ flux points store F̃
and η flux points store G̃.

4 solution points in 1D

5 flux points in 1D

The reconstructed field
using polynomials is
continuous within the cell
but discontinuous across the
cell interfaces.

Figure: Solution and flux points for
a fourth-order SD scheme
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Elements of the SD method

Compute interface fluxes

Eigenvalues of ∂Fi/∂Q are Vn − c, Vn, and Vn + c for N-S
equations.

Eigenvalues of ∂Fi/∂Q are Vn − c, Vn, Vn and Vn + c for
Micropolar equations.

Rusanov flux
F̂inv = 1

2

[
(FLi + FRi ) · nf − |Vn + c| ·

(
QR −QL

)]
Viscous interface flux – using averaging approach.
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Elements of the SD method

Locating solution and flux points

N solution points (One can actually position arbitrarily)

Chebyshev-Gauss points

N+1 flux points

Legendre-Gauss quadrature points plus two end points of 0 and 1.
key difference from Kopriva

Pn(ξ) =
2n− 1

n
(2ξ − 1)Pn−1(ξ)−

n− 1

n
Pn−2(ξ) (16)

where n = 1, . . . , N − 1, P−1(ξ) = 0 and P0(ξ) = 1
Ref: H. T. Huynh, AIAA paper, 2007-4079,
Van den Abeele, Lacor, Wang, JSC, 2008,
A. Jameson, JSC, 2010.
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Verification

Verification study for order of accuracy on unstructured
grids

No. of cells DOFs L2-error Order L1-error Order

3rd order SD
2 18 8.247E-4 - 7.376E-4 -
8 72 1.501E-4 2.46 1.244E-4 2.57

32 288 1.865E-5 2.99 1.675E-5 2.89

4th order SD
2 32 2.531E-4 - 1.93E-4 -
8 128 2.19E-5 3.53 1.927E-5 3.55

32 512 1.825E-6 3.585 1.641E-6 3.32

Table: L2 and L1 errors and orders of accuracy for planar Couette flow
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Flow past an oscillating cylinder

Computational conditions

Re = ρU∞D
µ+κ = 185

Freestream Mach number = 0.2

j = 1e-6

Γ = 1e− 8

Oscillation amplitude Ay/D = 0.2,

Reduced frequency fD/U∞ = 0.2145.
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Flow past an oscillating cylinder

Solution of Navier-Stokes equations
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Flow past an oscillating cylinder

Solution of Micropolar equations (µ/κ = 0.544)
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Flow past an oscillating cylinder

Micropolar effect on lift coefficient

µ/κ = 0.544 case v.s. Navier-Stokes

Only one shedding frequency is obtained from Micropolar solution!
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Flow past an oscillating cylinder

Solution of Micropolar equations (µ/κ = 2.6)
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Computational condition for Case I

Re = ρU∞D
µ+κ = 500,

Mach = 0.2,

µ = 8e− 4,

κ = 1e− 3,

j = 1e-6,

Γ = 1e− 8,

Oscillation amplitude Ay/D = 0.25,

Reduced frequency fD/U∞ = 0.1.
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Vorticity contour
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Computational condition for Case II

Re = ρU∞D
µ+κ = 500,

Mach = 0.2,

µ = 8e− 4,

κ = 1e− 3,

j = 1e-6,

Γ = 1e− 8,

Oscillation amplitude Ay/D = 0.25,

Reduced frequency fD/U∞ = 0.5.
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Vorticity contour from Navier-Stokes solution
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Vorticity contour from Micropolar solution (µ/κ = 0.54)
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Flow around a heaving and pitching airfoil past an oscillating cylinder

Gyration contour
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Concluding remark

Concluding remarks

We introduced a new formulation for compressible flow
different from Navier-Stokes equations.

SD method is successfully formulated and implemented for
unsteady Micropolar flow.

Optimal order of accuracy is obtained.

Extension is successfully made to moving and deformable
grids.
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Concluding remark
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Concluding remark

Mesh for a Plunge-Pitch Airfoil
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Concluding remark

Publications of the SD method

Liu, Vinokur, Wang, J. Comput. Physics, 2006; Wave
Equations.

Wang, Liu, May, Jameson, J. Scientific Computing, 2007;
Euler Equations.

Liang, Jameson, Wang, J. Comput. Physics, 2009; N-S
equations.

Chen, Liang, Lee, Computers & Fluids, 2011. Micropolar
Equations.

Multidomain staggered spectral method

Kopriva, J. Comput. Physics, 1998.
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